Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Halide perovskite nanocrystals are at the forefront of materials research due to their remarkable optoelectronic properties and versatile applications. While their lattice structure and optical properties have been extensively investigated for the structure–property correlation, their lattice dynamics, the physical link between the lattice structure and optoelectronic properties, has been much less visited. We report the evolution of structural dynamics of a series of cesium lead halide perovskite nanocrystals whose size and morphology are systematically varied by synthesis temperature. Low-frequency Raman spectroscopy uncovers the nanocrystals’ structural dynamics, including a relaxational spectral continuum from ligand librations and a phonon spectrum evolving with nanocrystal size. As the size of nanocrystals increases, their phonon spectrum becomes more intense, and their spectral weights redistribute with new first- and second-order modes being activated. The linewidth of the observed phonon modes generally broadens as the nanocrystal grows larger, an interesting deviation from the established phonon confinement model. We suggest that strong confinement and truncation of the lattice and ligands anchoring on the surface might lead to pinning of the lattice dynamics at nanoscale. These findings offer new insights into the bulk–nano-transition in halide perovskite soft semiconductors.more » « less
- 
            All-inorganic lead halide perovskite (CsPbX3) nanocrystals (NCs) have emerged as a highly promising new generation of light emitters due to their extraordinary photophysical properties. However, the performance of these semiconducting NCs is undermined due to the inherent toxicity of lead and long-term environmental stability. Here, we report the addition of B-site cation and X-site anion (pseudo-halide) concurrently using Ba(SCN)2 (≤50%) in CsPbX3 NCs to reduce the lead and improve the photophysical properties and stability. The as-grown particles demonstrated an analogous structure with an almost identical lattice constant and a fluctuation of particle size without altering the morphology of particles. Photoluminescence quantum yield is enhanced up to near unity (~98%) by taking advantage of concomitant doping at the B- and X-site of the structure. Benefitted from the defect reductions and stronger bonding interaction between Pb2+ and SCN− ions, Ba(SCN)2-based NCs exhibit improved stability towards air and moisture compared to the host NCs. The doped NCs retain higher PLQY (as high as seven times) compared to the host NCs) when stored in an ambient atmosphere for more than 176 days. A novel 3D-printed multiplex color conversion layer was used to fabricate a white light-emitting diode (LED). The obtained white light shows a correlated color temperature of 6764 K, a color rendering index of 87, and luminous efficacy of radiation of 333 lm/W. In summary, this work proposes a facile route to treat sensitive lead halide perovskite NCs and to fabricate LEDs by using a low-cost large-scale 3-D printing method, which would serve as a foundation for fabricating high-quality optoelectronic devices for near future lighting technologies.more » « less
- 
            Abstract Domain features and domain walls in lead halide perovskites (LHPs) have attracted broad interest due to their potential impact on optoelectronic properties of this unique class of solution‐processable semiconductors. Usingnonpolarizedlight and simple imaging configurations, ferroelastic twin domains and their switchings through multiple consecutive phase transitions are directly visualized. This direct optical contrast originates from finite optical reflections at the wall interface between two compositionally identical, orientationally different, optically anisotropic domains inside the material bulk. The findings show these domain walls serve as internal reflectors and steer energy transport inside halide perovskitesoptically. First‐principles calculations show universal low domain‐wall energies and modest energy barriers of domain switching, confirming their prevalent appearance, stable presence, and facile moving observed in the experiments. The generality of ferroelasticity in halide perovskites stems from their soft bonding characteristics. This work shows the feasibility of using LHP twin domain walls as optical guides of internal photoexcitations, capable of nonvolatile on–off switching and tunable positioning endowed by their universal ferroelasticity.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
